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Introduction

In this paper, we shall be concerned
with the Sylvester system of first order
linear  differential  non-homogeneous
equation and establish a necessary and
sufficient condition for the existence of
(®,¥)bounded solutions and deduce the
results of Lyapunov systems as a particular
case. We establish variation of parameters
formula and use it as a tool to
establish our main results. Sylvester
system of first order linear non-
homogeneous equation is an interesting
area of current research and the general
form of its solution in two fundamental
matrices is only established by Murty
and Prasad in the year of 1989 [9].
The paper attracted many eminent
mathematicians like Richard Bellman, Don
Fausett, Lakshmikantham to mention a
few. Recent results established
byViswanadh, V. Kanuri, et. al., is the
main motivation behind our results. The
concept of W-bounded solutions for linear
system of differential equations is due to
T. G. Halam [14]. The variation of
parameters formula we established is
new and will have significant
contributions on control engineering
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problems. The novel idea adopted by
Viswanadh, Wu and Murty [8] on the
existence of (PQY)bounded solutions and
on the existence of W-bounded solutions
by Kasi Viswanadh, V. Kanuri, et. al. [4-
7,11,12,13] on time scale dynamical
systems is a wuseful and significant
contribution to  the theory and
differential and difference equations.
Further these ideas have been extended
by Kasi Viswanadh V. Kanuri to fuzzy
differential equations in a novel
concept, and is very interesting and
useful contribution to the theory of
differential equations and also in
applications to control systems. The
results established on stability,
controllability criteria established on
state scale dynamical systems on first
order linear systems [9] can be
generalized to (®,%)bounded solutions
to Sylvester linear system of differential
equations. This paper is organized as
follows: section 2 presents a criterion for
the existence of ®-bounded solution of the
matrix linear system T'=ATand Y-bounded
solution  of  the linear  system
T'=Bx*T(where * refers to the transpose of
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the complex conjugate). By super
imposing these two solutions, we establish
the general solution of the linear matrix
Sylvester systemT'=A(t)T+TB(t)(1.1)
where Tis a square matrix of order (n xn)
and A(t), B(t)are also n xn matrices. We
present our basic results that are available
in literature [4, 5, 6, 7, 8, 10, 11]. Our
main results are established in section 3.
This section also presents criteria for the
Sylvester system (1.1) to be stable,
asymptotically stable, and establishing
the result on controllability. Throughout
this paper, (t)stands for a fundamental
matrix solution of the linear system.

T'=(t)T(1.2) and Z(t)stands for a
fundamental matrix solution of the linear
systemT'=Bx*T. (1.3) 2. Preliminaries
In this section, we shall be concerned
with establishing general solution of the
Sylvester linear system and present OY-
bounded solution of the linear system (1.2)
and then WZ-bounded solution of the
system (1.3).Theorem 2.1 Tis a solution of
(1.1) if and only if T=YCZ*, where Cis a
constant square matrix and Y is a
fundamental matrix solution of (1.2) and Z
is a fundamental matrix solution of
(1.3).Proof: It can easily be verified that
Tdefined by YCZxis a solution of (1.1).
FOIT'=Y'CZ*+YCZ+'=(t)YCZ*+YCZ*B=A
T+TB.Hence, YCZxis a solution of (1.1).
Now, to prove that every solution is of this
form, let The a solution, and Kbe a matrix
defined by K=Y-1T. Then,
Y'K+YK'=AYK+YKB*or YK'=YKB*or
K'=KB*or K* = BK*. Since Zis a
fundamental matrix solution of (1.3), it
follows that there exists a constant square
matrix Csuch that Kx=ZCxor K=CZx.
Since T=YK=YCZx. Jin [4],
Kasi ~ Viswanadh, V. Kanuri, et.
al.presented a novel concept on Y-
bounded solutions of linear differential
systems on time scales. We use these ideas
as a tool to establish (®,%¥)bounded
solutions of the Sylvester system (2.1). If
B is replaced by A*, we get Lyapunov
system. In this case the general solution is
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given Dby YCY*.Definition 21 A
functionY:R+—Rn2is said to be -
bounded solution onRif ®Yis bounded on
R.Definition 2.2 A function Z:R+—Rn2is
said to be Y-bounded solution onRif
Zx¥xis bounded on R.Definition 2.3 A
function Y:R+—Rn2is said to be ®-
Lebesgue integrable on R+if Y(t)is
measurable and ®(t)Y(t)is Lebesgue
integrable on R+.Definition 2.4 A function
Z:R+—Rn2is said to be WY-Lebesgue
integrable on R+if Zx(t)is measurable and
Zx(t)W*(t)is Lebesgue integrable on
R+.Let ®i:R+—Rn, i=1,2,...,n, be
continuous and let
O(t)=(D1(t),D2(1),...,Dn(t))be linearly
independent so that ®@is invertible and also
we assumeWis invertible.By a solution of
the linear system (1.1), we mean
Y(t)CZ+(t), which is an absolutely
continuous function and satisfies (1.1) for
almost all t>0.Let Ybe a fundamental
matrix solution of (1.2) satisfying
Y(0)=Inand Zbe a fundamental matrix
solution of (1.3) satisfyingZ(0)=In. Let
X1denote the subspace of Rnconsisting of
all vectors whose values are of ®-bounded
solutions of (1.2) for t=0and X2be the
arbitrary fixed subspace of
Rnsupplementary toX1. Further, let P1lbe
the projection matrix of Rnonto
X1(P12=Pland Pl:Rn—Rn) and let
P2=[-P1lbe the projection matrix on
X2Definition 25 A function
f:R—Rnxnis said to be ®-bounded on
Rif ®d(t)f(t)is bounded on R, i.e.
SUPtERID(t)f (t)I<oo.Definition 2.6 A
matrix Y:R—Rnxnis saidto be ®-bounded
on Rif the matrix ®(t)Y(t)is bounded on
R, i.e. there exists an M>0such that
supteRID(t)Y (t)I<MDefinition 27 A
matrix Y:R—Rnxnis said to be ®-
integrable  on Rcomponent-wise  if
(L)Y (t)is integrable on R,
i.eflo(t)Y(t)ldt<oooo0.Definition 2.8 A
matrix function (®,%):R—Rn2xn2is said
to be (®,¥)-bounded if the
matrix||®YZ+Wx|| is bounded on R.
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3. Main results  In this section, we shall
be concerned with the existence of (®,V)-
bounded solution of the linear Sylvester
system (1.1), and then present the stability
and asymptotic stability of the Sylvester
system.Theorem 3.1 Let Aand Bbe (nxn)
continuous square matrices on R. Then,
the system (1.1) has at least one (®,¥)-
bounded solution on Rfor every
continuous (®,%)-bounded function if and
only if there exists a positive constant
Ksuch that
NIOE)Y (£)PZ*(t)P*(t)loo—co<Kfor all
t>0(3.1)where P=P-on
(—oo,t),P=P0+P+on (t,0),P=P+on (0,),
P=P-on (-x,0), P=P0+P-on (0,t),
P=P+on (t,©).Proof: First, suppose the
linear Sylvester system has at least one
(®,¥)-bounded solution on Rfor every
continuous (®,¥)-bounded function on R.
Then, it is claimed that there exists a
constant K>0such that the inequality (3.1)
holds. Let Bbe the Banach space of all
(®,¥)-bounded continuous functions
T:R—Rn2with norm
ITIB=supteRID(t)Y (t)Z*(t)¥*(t)T(t)l, we
define(i) C: the Banach space of all (®,¥)-
bounded continuous functions
T:R—Rn2with

normITIC=supteRIP(t)Y (t)Z*(t)¥*(t)I(ii)
B: the Banach space of all
(®,¥)—Aintegrable functions
T:R—Rn2with norm

ITIB  =Ml®t)Y () Z*(t)¥*(t)ldtoo—oo(iii)
D: the set of all continuous function
T:R—Rn2which are absolutely
continuous on all intervals JcR, (®,¥)-
bounded on R, T(0)EX—QX+,
andT'=AT+TBeB. Step 1: We first claim
that (D,IID)is a Banach space. For, we first
note that (D,lID)is a vector space. Let
{Tn}eNbe a fundamental sequence in B.
Then, there exists a continuous (®,¥)-
bounded function on Rsuch
thatlimn—oo®n(t)Tn(t)¥nx(t)Tnx(t)=D(t
)T (t)P+(t)T+(t)Uniformly onR. From the
inequalitylTn(t)-T (¢t)I<I®—1(t)I{IP(t)¥*(
O +—L1(ONP*(t)I-1D-1(t)IIP(t)T(t)¥*(t)
I¥*—1(¢t)l} Hence,
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limn—ooTn(t)=T(t)uniformly on every
compact subset of R. Thus,(0)EX—QX+.
Thus, (D.IID)is a Banach space.We now
establish variation of parameters formula
for the non-homogeneous Sylvester
systemT'=A(t)T+T B(t)+F(t)(3.2)where
F(t)is a given (nxn) square matrix. Let
The any solution of (3.2) and The a
particular solution of (3.2). Then T-Tis a
solution of the homogenous system (1.1).
Any solution of the homogeneous system
is of the form T(t)=Y(t)CZx(t), where
Y(t)is a fundamental matrix solution of
(1.2) and Z(t)is a fundamental matrix of
(1.3). Such a solution cannot be a solution
of (3.1) unless(t)=0.We seek a particular
solution of (3.1) in the
formT (t)=Y (¢)C(t)Z*(t)

and see that T'(t)is a particular solution of
(3.2).

Now, T'(t)=Y'(t)C(t)Z*(t)+Y (t)C'(t)Z*(t)+
Y(£)C(t)Z+'(t)=A(t)Y (t)C(t)Z*(t)+Y (t)C'(t
VZx(t)+Y(t)C(t)Z*B

SriRam  Bhagavatula,lIJECS  Volume
09Issue  11November, 2020  Page
N0.25252-25259  Page 25255Now on
substitution in the egn (3.1) gives
AR)Y()C(t)Z*(t)+Y (t)C'(t)Z+(t)+Y (t)C(t)
ZxB=A(t)Y (t)C(t)Z*(t)+Y (t)C(t)Z*(t)B(t)
+F(t)which gives  Y(t)C'(t)Z*(t)=F(t),
then C'(t)=Y-1(t)F(t)Z+—1(t),
orC(t)=Y-1(s)F(s)Z*—1(s)tadsand

hence,

T(t)=Y (t)[Y—1(s)F(s)Z*—1(s)tadsZx(t).
Now, it can easily be verified that
T(t)is a solution of (3.2), and the general
solution is given
byT(t)=Y (t)CZ*(t)+T(t)=Y (t)CZ*(t)+Y (t)|
Y=1(s)F(s)Z*—1(s)tadsZx(t).We now
claim that three exists a constant
K0>0such that for every FeEB and for
corresponding solution of TeDof (3.2), we
havesupteRID(t)T (t)¥*(t)I<KOsupteRID
(t)F(t)¥*(t)lor

supteRmax 1<i<nl®i(t)Ti(t)Vi*(t)I<KOsu
ptERmax 1<i<nl®i(t)Fi(t)¥Vix(t)lor
supt€Rmax 1<i<n1<j<nl®ij(t)Tij(t)Pij*(
t)I<KOsupte€ Rmax 1<i<n1<j<nl®ij(t)Fij(
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t)Wij*(t)I(3.3)For, define the mapping
R:D—Bas RT=T'-AT-TB. Clearly, Ris
linear and bounded with IRI<1. Let RT=0,
and the fact T satisfies the differential
equationT'=AT+TBand hence Te€B. This
shows that Tis (®,%¥)-bounded onRof the
system (1.2).
Then(0)eX0N(X—@X+)={0}.Thus, T=0so
that Ris one-to-one. To prove that Ris
“onto”, for any FEB, let Tbe a (®,¥)-
bounded onRof the system (1.1) and The
the solution of the Cauchy
problemT'=A(t)T+T B(t)+F(t)satisfying
T(0)=(P—+P+)T(0). Then, U=R-Tis a
solution of the system (3.2) with
(0)=R(0)—~(P—+P+)T(0).  Thus, U€Dand
RT=F. Consequently, the mapping Ris
a bounded, one-to-one linear operator
from one Banach space Bto another
Banach space B . Hence, R—1exists and
bounded, wherelR—1FIB<IR-1IlIFIBfor all
FeB It follows that
IR-1FI=(IR—11-1)IFI<KOIFIBwhereK0=IR
—11-1, which is equivalent to (3.3).Let
fland 62be any fixed real numbers
such that 81<0<62and F:R—Rn2be a
function in B which vanishes on
(—0,01]U[02,0). Then it is easy to see that
the function T:R—Rn2defined as

SriRam  Bhagavatula,lJECS  Volume
09Issue  11November, 2020  Page
No0.25252-25259 Page
25256T(t)={-[0014(t)POP—1(c(s))f (s)ds
—[0201¢(t)P+p—1(a(s))f(s)As,t<01-]tO
1(t)P—p—1(a(s))f (s)As+]t0¢(t)POY—1(
a(s))f(5)As—[6261¢(t)P-p—1(a(s))f(s)A
s,,01<t<02[020¢(t)P+¢p—1(a(s))f (s)As,t
>62is the solution in D of the system (1.1).
Now if we
PULG(t,s)={D(t)P*(t)P—P+—1(s)D—1(s),s
<O<t®(t)¥*(t)(PO+P+)¥+—1(s)d—1(s),0<
s<t—®(t)P*(t) P+¥+—1(s)D—1(s),0<t<sD
()P *(t)P—P+—1(s)D—1(s),s<t<0—D(t)¥*
(£)(PO+P+)P+—1(s)D—1(s),t<s<0—D(t)P*
(t)P+¥*—1(s)D—1(s),t<0<s.Then, Gis
continuous on Rn2at all points except at
t=s, and at t=sGhas a jump discontinuity
of unit-magnitude (In). Then, we have
T(t)=IG(t,s)F(s)ds8201for  tER.Indeed,
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for 61>t, we have
[G(t,5)F(s5)ds6201=—|D(t)¥P*(t)(PO+P+)¥
+—1(s)D—1(s)F(s)ds001—d(t)¥*(t)P+Px
—1(s)®—1(s)F(s)ds620.Rewrite the
second integral as [...ds+610]...ds6261,
we
getG(t,5)F(s)ds0201=—[D(t)¥*(t) PO¥*—
1(s)D—1(s)F(s)ds001-[d(t)P*(t)P+¥P+—1
(s)D—1(s)F(s)ds0201=T(t).For t€[61,0),
we
havelG(t,s)F(s)ds6201=—[D(t)¥*(t)P—¥
*—1(s)D—1(s)F(s)dstO1—

SriRam  Bhagavatula,lJECS  Volume
09Issue  11November, 2020  Page
No0.25252-25259 Page
25257[D(t)P*(t)(PO+P+)¥*—1(s)D—1(s)F
(s)ds—0t|(t)P*(t) PHP+—1(s)D—1(s)F(s)
ds020=[D(t)¥*(t)P—¥+—1(s)D—1(s)F(s)
dstO1+[®d(t)P*(t) POV *—1(s)D—1(s)F(s)d
s—t0JD(t)¥P*(t)P1¥*—1(s)D—1(s)F(s)dsO
2t=T(t).For te(0,62), we
have|G(t,s)F(s)ds0201=|D(t)P(t)P—¥*
—1(5)D-1(s)F(s)ds001+|d(t)¥(t)(PO+P
—)W+—1(s)D—1(s)F(s)ds—t0]D(t)¥*(t) P+
Yx—1(s)DO—1(s)F(s)ds02t=]D(t)¥*(t) P—
Px—1(s)D—1(s)F(s)dstO1+]D(t)P*(t)PO
Wx—1(s)D—1(5)F(s)ds—t0]D(t)P*(t) P+ P+
—1(s)D—1(s)F(s)dsO2t=T(t).For t>62, we
can easily show that
[G(t,s)F(s)ds6201=T(t). Therefore,
SUpteRIDO(E)¥*(t)G(t,s)F(s)ds0201I<K]l
O(t)Y+(t)F(t)Idto261for all teR.
Hence,l®(t)¥*(t)G(t,s)P*—1(s)D—1(s)I<
Kfor all teR. Now, to prove the converse
statement, suppose the fundamental
matrices of Yand Zof (1.2) and (1.3) satisfy
the condition (3.1) for some K>0. Let
F:R—Rn2be a Lebesgue (®,¥)-delta
integrable function onR. We consider the
function U:R—Rn2defined
byU (t)=]D(t)¥*(t)P+—1(s)D—1(s)T(s)ds
co—oo+|D(t)P*(£)P*—1(s)D—1(s)T(s)ds—t
0JO(t)¥*(t)¥+—1(s)D—1(s)T(s)dsoot.
(3.3)Then, the function is well defined
onR, and
|D(t)P*()U(O)ISK[ID(s)P*(s)T(s)ldsoo—
oo,which shows that Uis (®,%)-bounded
onR. Hence the proof is complete.
O
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SriRam  Bhagavatula,lIJECS  Volume
09Issue  11November, 2020  Page
N0.25252-25259  Page 25258Theorem
3.2: If the homogeneous Sylvester system
(1.1) has no non-trivial (®,¥)-bounded
solution onR, then (1.1) has a unique
(®,¥)-bounded solution onRfor every

Lebesgue (®,¥)-integrable
functionF:R—Rn2if and only there exists
a K>0such that

ID)Y (t)Z*(t)V*(t)P-V*—1(s)Z*—1(s)Y—
1(s)®—1(s)I<Ksfor

—oo<s<t<coandlD(t)Y (t)Z*(t)V*(t) P+¥*—
1(s)Z*—1(s)Y—1(s)®—1(s)I<Ktfor
—oo<t<s<owoThe proof follows by taking
P0O=0in Theorem 3.1.Theorem 3.3
Suppose that a fundamental matrix
Y(t)of T'=ATand a fundamental matrix
Z(t)of T'=BxTsatisfy the conditions:(i)
ID(t)Y (t)Z*(t)V*(t)P—V*—1(s)Z+—1(s)Y—
1(s)®—1(s)I<Kfor

t>0,5>0,s>tlD()Y (t)Z*(t)V*(t)P-¥*—1(s
)Z+—1(s)Y—1(s)D—1(s)I<Kfor
t<0,s<tld(t)Y (t)Z*(t)¥*(t)(PO+P—)¥*—1
(s)Z*—1(s)Y—1(s)@—1(s)I<KTfor
t<0,5>t,s<0ID(t)Y (t)Z*(t)¥*(t)P+¥+—1(s
)Z+—1(s)Y—1(s)®—1(s)I<Kfor
t<0,s>0,s>t(ii)

limt—old(t)Y (t)Z*(t)¥+*(t)POI=0limt—
old(t)Y (t)Z*(t)¥*(t)P11=0limt—ool D(t)
Y(t)Z+(t)¥+(t)P—I1=0and(iii) the function
F:R—Rn2is Lebesgue-delta integrable
onR.Then, every (®,¥)-bounded solution
Tof (1.2 is such
thatlimt—+ool®(t)Y (t)Z*(t)¥P*(t) T (t)I=0.
The proof is similar to that of the Theorem
3.3in [4].

References

1. Bellman R: Introduction to Matrix
Analysis, McGraw  Hill  Book
Company, Inc., New York, 1960.

2. Aurel Diamandescu, Existence of
WYbounded solutions for a system of
differential equations, Electronic J. of

Fadhil

e-ISSN: 1694-4909

Differential Equations, vol. 2004, no.
63, p: 1-6 (2004).

. Charyulu L. N. R., Sundaranand V.

Putcha, G.V.S.R. Deekshitulu,
Existence of (®,¥)-bounded solutions
for linear system first order Kronecker
product systems, Int. J. Recent Sci.
Res., vol. 11, no. 6, p: 39047-39053
(2020).

Kasi Viswanadh V. Kanuri, K. N.
Murty, “Three-Point boundary value
problems associated with first order
matrix difference system-existence
and uniqueness via shortest and
closest Lattice  vector methods”,
Journal of Nonlinear Sciences and
Applications, Volume 12, Issue 11,
(2019) 720-727.

Kasi Viswanadh V Kanuri,Existence

Of W-Bounded Solutions For Fuzzy

Dynamical Systems On Time Scales,
International Journal of Scientific &
Engineering Research, 2020, Vol. 11,
No. 5, 613—624

Kasi  Viswanadh V. Kanuri,R.

Suryanarayana, K. N.  Murty,

Existence ofW-bounded solutions for
linear differential systems on time
scales, Journal of Mathematics and
Computer Science, 20 (2020), no. 1, 1-
-13.

Murty, K. N., Andreou, S., Viswanadh,
K. V. K., Qualitative properties of
general first order matrix difference
systems. Nonlinear Studies, 16(2009),
no. 4, 359-370.

K. N. Murty, V. V. S. S. S. Balaram,

K.V. K. Viswanadh, “Solution of

Kronecker Product Initial Value
Problems Associated with First Order
Difference  System viaTensor-based
Hardness of the Shortest Vector
Problem”, Electronic Modeling, vol. 6,
p: 19-33 (2008).

Science and Technology
14



